Robust estimation of the correlation matrix of longitudinal data
We propose a double-robust procedure for modeling the correlation matrix of a longitudinal dataset. It is based on an alternative Cholesky decomposition of the form Σ = DLL ⊤ D where D is a diagonal matrix proportional to the square roots of the diagonal entries of Σ and L is a unit lower-triangular...
Gespeichert in:
Veröffentlicht in: | Statistics and computing 2013, Vol.23 (1), p.17-28 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose a double-robust procedure for modeling the correlation matrix of a longitudinal dataset. It is based on an alternative Cholesky decomposition of the form
Σ
=
DLL
⊤
D
where
D
is a diagonal matrix proportional to the square roots of the diagonal entries of
Σ
and
L
is a unit lower-triangular matrix determining solely the correlation matrix. The first robustness is with respect to model misspecification for the innovation variances in
D
, and the second is robustness to outliers in the data. The latter is handled using heavy-tailed multivariate
t
-distributions with unknown degrees of freedom. We develop a Fisher scoring algorithm for computing the maximum likelihood estimator of the parameters when the nonredundant and unconstrained entries of (
L
,
D
) are modeled parsimoniously using covariates. We compare our results with those based on the modified Cholesky decomposition of the form
LD
2
L
⊤
using simulations and a real dataset. |
---|---|
ISSN: | 0960-3174 1573-1375 |
DOI: | 10.1007/s11222-011-9284-6 |