Robust estimation of the correlation matrix of longitudinal data

We propose a double-robust procedure for modeling the correlation matrix of a longitudinal dataset. It is based on an alternative Cholesky decomposition of the form Σ = DLL ⊤ D where D is a diagonal matrix proportional to the square roots of the diagonal entries of Σ and L is a unit lower-triangular...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics and computing 2013, Vol.23 (1), p.17-28
Hauptverfasser: Maadooliat, Mehdi, Pourahmadi, Mohsen, Huang, Jianhua Z.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a double-robust procedure for modeling the correlation matrix of a longitudinal dataset. It is based on an alternative Cholesky decomposition of the form Σ = DLL ⊤ D where D is a diagonal matrix proportional to the square roots of the diagonal entries of Σ and L is a unit lower-triangular matrix determining solely the correlation matrix. The first robustness is with respect to model misspecification for the innovation variances in D , and the second is robustness to outliers in the data. The latter is handled using heavy-tailed multivariate t -distributions with unknown degrees of freedom. We develop a Fisher scoring algorithm for computing the maximum likelihood estimator of the parameters when the nonredundant and unconstrained entries of ( L , D ) are modeled parsimoniously using covariates. We compare our results with those based on the modified Cholesky decomposition of the form LD 2 L ⊤ using simulations and a real dataset.
ISSN:0960-3174
1573-1375
DOI:10.1007/s11222-011-9284-6