CC Hydrolases for Biocatalysis

Although CC bond hydrolases are distributed widely in Nature, they has as yet have received only limited attention in the area of biocatalysis compared to their counterpart the C‐heteroatom hydrolases, such as lipases and proteases. However, the substrate range of CC hydrolases, and their non‐depe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced synthesis & catalysis 2013-06, Vol.355 (9), p.1677-1691
Hauptverfasser: Siirola, Elina, Frank, Annika, Grogan, Gideon, Kroutil, Wolfgang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Although CC bond hydrolases are distributed widely in Nature, they has as yet have received only limited attention in the area of biocatalysis compared to their counterpart the C‐heteroatom hydrolases, such as lipases and proteases. However, the substrate range of CC hydrolases, and their non‐dependence on cofactors, suggest that these enzymes may have considerable potential for applications in synthesis. In addition, hydrolases such as the β‐diketone hydrolase from Rhodococcus (OCH) are known, that catalyse the formation of interesting chiral intermediates. Further enzymes, such as kynureninase and a meta‐cleavage product hydrolase (MhpC), are able to catalyse carbon‐carbon bond formation, suggesting wider applications in biocatalysis than previously envisaged. In this review, the distribution, catalytic characteristics and applications of CC hydrolases are described, with a view to assessing their potentialfor use in biocatalytic processes in the future.
ISSN:1615-4150
1615-4169
DOI:10.1002/adsc.201300232