Observing reduction of 4-nitrobenzenthiol on gold nanoparticles in situusing surface-enhanced Raman spectroscopy

In this article, reduction of 4-nitrobenzenthiol (4-NBT) on Au nanoparticles (NPs) was characterized using surface-enhanced Raman scattering (SERS). Plasmon-driven chemical transformation from 4-NBT dimering into p,p'-dimercaptoazobenzene (DMAB) has been investigated on the surface of Au NPs. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2013-08, Vol.15 (34), p.14196-14201
Hauptverfasser: Ren, Xiaoqian, Tan, Enzhong, Lang, Xiufeng, You, Tingting, Jiang, Li, Zhang, Hongyan, Yin, Penggang, Guo, Lin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, reduction of 4-nitrobenzenthiol (4-NBT) on Au nanoparticles (NPs) was characterized using surface-enhanced Raman scattering (SERS). Plasmon-driven chemical transformation from 4-NBT dimering into p,p'-dimercaptoazobenzene (DMAB) has been investigated on the surface of Au NPs. The laser power-dependent SERS spectra of 4-NBT on the surface of Au substrates were studied, and show that the laser power has an influence on the SERS signals of 4-NBT on Au NPs and production of DMAB by a plasmon-driven surface-catalyzed chemical reaction tends to be much easier under relative high laser power. Furthermore, we have used simple and efficient Au substrates (gold NPs with a size around 45 nm) exhibiting both catalytic properties and SERS activities to monitor the catalytic reaction of surface catalytic reaction process with borohydride solution. The experiments prove that the nitro-to-amino group conversion could be completed by borohydride at ambient conditions on Au substrates. Illuminated with high laser power, 4-NBT molecules and already formed DMAB molecules are further reduced into 4-aminobenzenthiol (4-ABT) by the addition of borohydride, While with low laser power 4-NBT molecules are transformed into 4-ABT with DMAB as the intermediate, which proves Au NPs are a mild and promising catalyst. Our studies might be helpful in extending the understanding of chemical reactions of 4-NBT and related research as well as providing a new strategy synthesis of azo dyes and anilines.
ISSN:1463-9076
1463-9084
DOI:10.1039/c3cp51385h