Bridging multi-scale approach to consider the effects of local deformations in the analysis of thin-walled members
Thin-walled members that have one dimension relatively large in comparison to the cross-sectional dimensions are usually modelled by using beam-type one-dimensional finite elements. Beam-type elements, however, are based on the assumption of rigid cross-section, thus they only allow considerations a...
Gespeichert in:
Veröffentlicht in: | Computational mechanics 2013-07, Vol.52 (1), p.65-79 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Thin-walled members that have one dimension relatively large in comparison to the cross-sectional dimensions are usually modelled by using beam-type one-dimensional finite elements. Beam-type elements, however, are based on the assumption of rigid cross-section, thus they only allow considerations associated with the beam axis behaviour such as flexural-, torsional- or lateral-buckling and cannot consider the effects of local deformations such as flange local buckling or distortional buckling. In order to capture the local effects of this type shell-type finite element models can be used. Based on the Bridging multi-scale approach, this study proposes a numerical technique that is able to split the global analysis, which is performed by using simple beam-type elements, from the local analysis which is based on more sophisticated shell-type elements. As a result, the proposed multi-scale method allows the usage of shell elements in a local region to incorporate the local deformation effects on the overall behaviour of thin-walled members without necessitating a shell-type model for the whole member. Comparisons with full shell-type analysis are provided in order to illustrate the efficiency of the method developed herein. |
---|---|
ISSN: | 0178-7675 1432-0924 |
DOI: | 10.1007/s00466-012-0798-3 |