A Frechet law and an Erds-Philipp law for maximal cuspidal windings

In this paper we establish a Frechet law for maximal cuspidal windings of the geodesic flow on a Riemannian surface associated with an arbitrary finitely generated, essentially free Fuchsian group with parabolic elements. This result extends previous work by Galambos and Dolgopyat and is obtained by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ergodic theory and dynamical systems 2013-08, Vol.33 (4), p.1008-1028
Hauptverfasser: JAERISCH, JOHANNES, KESSEBOeHMER, MARC, Stratmann, Bernd O
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we establish a Frechet law for maximal cuspidal windings of the geodesic flow on a Riemannian surface associated with an arbitrary finitely generated, essentially free Fuchsian group with parabolic elements. This result extends previous work by Galambos and Dolgopyat and is obtained by applying extreme value theory. Subsequently, we show that this law gives rise to an Erds-Philipp law and to various generalized Khintchine-type results for maximal cuspidal windings. These results strengthen previous results by Sullivan, Stratmann and Velani for Kleinian groups, and extend earlier work by Philipp on continued fractions, which was inspired by a conjecture of Erds.
ISSN:0143-3857
1469-4417
DOI:10.1017/S0143385712000235