Theoretical study of the nuclear spin-molecular rotation coupling for relativistic electrons and non-relativistic nuclei. II. Quantitative results in HX (X = H,F,Cl,Br,I) compounds

In the present work, numerical results of the nuclear spin-rotation (SR) tensor in the series of compounds HX (X = H,F,Cl,Br,I) within relativistic 4-component expressions obtained by Aucar et al. [J. Chem. Phys. 136, 204119 (2012)] are presented. The SR tensors of both the H and X nuclei are discus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2013-04, Vol.138 (13), p.134107-134107
Hauptverfasser: Aucar, I Agustín, Gómez, Sergio S, Melo, Juan I, Giribet, Claudia C, Ruiz de Azúa, Martín C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the present work, numerical results of the nuclear spin-rotation (SR) tensor in the series of compounds HX (X = H,F,Cl,Br,I) within relativistic 4-component expressions obtained by Aucar et al. [J. Chem. Phys. 136, 204119 (2012)] are presented. The SR tensors of both the H and X nuclei are discussed. Calculations were carried out within the relativistic Linear Response formalism at the Random Phase Approximation with the DIRAC program. For the halogen nucleus X, correlation effects on the non-relativistic values are shown to be of similar magnitude and opposite sign to relativistic effects. For the light H nucleus, by means of the linear response within the elimination of the small component approach it is shown that the whole relativistic effect is given by the spin-orbit operator combined with the Fermi contact operator. Comparison of "best estimate" calculated values with experimental results yield differences smaller than 2%-3% in all cases. The validity of "Flygare's relation" linking the SR tensor and the NMR nuclear magnetic shielding tensor in the present series of compounds is analyzed.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.4796461