Controllability of control systems on complex simple lie groups and the topology of flag manifolds

Let S be a subsemigroup with nonempty interior of a connected complex simple Lie group G . It is proved that S = G if S contains a subgroup G (α) ≈ Sl (2, ) generated by the exp , where is the root space of the root α. The proof uses the fact, proved before, that the invariant control set of S is co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of dynamical and control systems 2013-04, Vol.19 (2), p.157-171
Hauptverfasser: dos Santos, Ariane L., Martin, Luiz A. B. San
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 171
container_issue 2
container_start_page 157
container_title Journal of dynamical and control systems
container_volume 19
creator dos Santos, Ariane L.
Martin, Luiz A. B. San
description Let S be a subsemigroup with nonempty interior of a connected complex simple Lie group G . It is proved that S = G if S contains a subgroup G (α) ≈ Sl (2, ) generated by the exp , where is the root space of the root α. The proof uses the fact, proved before, that the invariant control set of S is contractible in some flag manifold if S is proper, and exploits the fact that several orbits of G (α) are 2-spheres not null homotopic. The result is applied to revisit a controllability theorem and get some improvements.
doi_str_mv 10.1007/s10883-013-9168-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1429855001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1429855001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-619eb337c0a3dabe128cf7408f2d56125ca50b2c9fc000ca4d1627554f5d60483</originalsourceid><addsrcrecordid>eNp9UE1LxDAUDKKgrv4Abzl6ieajadOjLH7Bghc9hzRNape0qXktuP_erPXsaR7DzPBmELph9I5RWt0Do0oJQpkgNSsVkSfogslKEFXW6jTftKoJr3hxji4B9pTSWgl1gZptHOcUQzBNH_r5gKPHdqUwHGB2A-A4ZmqYgvvG0B8Rh97hLsVlAmzGFs-fDs9xiiF2vwE-mA4PZux9DC1coTNvArjrP9ygj6fH9-0L2b09v24fdsQKzmZSsto1QlSWGtGaxjGurK8KqjxvZcm4tEbShtva2_y9NUXLSl5JWXjZlrRQYoNu19wpxa_FwayHHqzL1UYXF9Cs4LWSkuaNNoitUpsiQHJeT6kfTDpoRvVxT73uqbNWH_fUMnv46oGsHTuX9D4uacyN_jH9AAlteZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1429855001</pqid></control><display><type>article</type><title>Controllability of control systems on complex simple lie groups and the topology of flag manifolds</title><source>SpringerLink Journals - AutoHoldings</source><creator>dos Santos, Ariane L. ; Martin, Luiz A. B. San</creator><creatorcontrib>dos Santos, Ariane L. ; Martin, Luiz A. B. San</creatorcontrib><description>Let S be a subsemigroup with nonempty interior of a connected complex simple Lie group G . It is proved that S = G if S contains a subgroup G (α) ≈ Sl (2, ) generated by the exp , where is the root space of the root α. The proof uses the fact, proved before, that the invariant control set of S is contractible in some flag manifold if S is proper, and exploits the fact that several orbits of G (α) are 2-spheres not null homotopic. The result is applied to revisit a controllability theorem and get some improvements.</description><identifier>ISSN: 1079-2724</identifier><identifier>EISSN: 1573-8698</identifier><identifier>DOI: 10.1007/s10883-013-9168-5</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Calculus of Variations and Optimal Control; Optimization ; Control ; Control systems ; Controllability ; Dynamical Systems ; Dynamical Systems and Ergodic Theory ; Flags ; Invariants ; Lie groups ; Manifolds ; Mathematics ; Mathematics and Statistics ; Orbits ; Roots ; Systems Theory ; Vibration</subject><ispartof>Journal of dynamical and control systems, 2013-04, Vol.19 (2), p.157-171</ispartof><rights>Springer Science+Business Media New York 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-619eb337c0a3dabe128cf7408f2d56125ca50b2c9fc000ca4d1627554f5d60483</citedby><cites>FETCH-LOGICAL-c321t-619eb337c0a3dabe128cf7408f2d56125ca50b2c9fc000ca4d1627554f5d60483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10883-013-9168-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10883-013-9168-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>dos Santos, Ariane L.</creatorcontrib><creatorcontrib>Martin, Luiz A. B. San</creatorcontrib><title>Controllability of control systems on complex simple lie groups and the topology of flag manifolds</title><title>Journal of dynamical and control systems</title><addtitle>J Dyn Control Syst</addtitle><description>Let S be a subsemigroup with nonempty interior of a connected complex simple Lie group G . It is proved that S = G if S contains a subgroup G (α) ≈ Sl (2, ) generated by the exp , where is the root space of the root α. The proof uses the fact, proved before, that the invariant control set of S is contractible in some flag manifold if S is proper, and exploits the fact that several orbits of G (α) are 2-spheres not null homotopic. The result is applied to revisit a controllability theorem and get some improvements.</description><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Control</subject><subject>Control systems</subject><subject>Controllability</subject><subject>Dynamical Systems</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Flags</subject><subject>Invariants</subject><subject>Lie groups</subject><subject>Manifolds</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Orbits</subject><subject>Roots</subject><subject>Systems Theory</subject><subject>Vibration</subject><issn>1079-2724</issn><issn>1573-8698</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAUDKKgrv4Abzl6ieajadOjLH7Bghc9hzRNape0qXktuP_erPXsaR7DzPBmELph9I5RWt0Do0oJQpkgNSsVkSfogslKEFXW6jTftKoJr3hxji4B9pTSWgl1gZptHOcUQzBNH_r5gKPHdqUwHGB2A-A4ZmqYgvvG0B8Rh97hLsVlAmzGFs-fDs9xiiF2vwE-mA4PZux9DC1coTNvArjrP9ygj6fH9-0L2b09v24fdsQKzmZSsto1QlSWGtGaxjGurK8KqjxvZcm4tEbShtva2_y9NUXLSl5JWXjZlrRQYoNu19wpxa_FwayHHqzL1UYXF9Cs4LWSkuaNNoitUpsiQHJeT6kfTDpoRvVxT73uqbNWH_fUMnv46oGsHTuX9D4uacyN_jH9AAlteZA</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>dos Santos, Ariane L.</creator><creator>Martin, Luiz A. B. San</creator><general>Springer US</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130401</creationdate><title>Controllability of control systems on complex simple lie groups and the topology of flag manifolds</title><author>dos Santos, Ariane L. ; Martin, Luiz A. B. San</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-619eb337c0a3dabe128cf7408f2d56125ca50b2c9fc000ca4d1627554f5d60483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Control</topic><topic>Control systems</topic><topic>Controllability</topic><topic>Dynamical Systems</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Flags</topic><topic>Invariants</topic><topic>Lie groups</topic><topic>Manifolds</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Orbits</topic><topic>Roots</topic><topic>Systems Theory</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>dos Santos, Ariane L.</creatorcontrib><creatorcontrib>Martin, Luiz A. B. San</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of dynamical and control systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>dos Santos, Ariane L.</au><au>Martin, Luiz A. B. San</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controllability of control systems on complex simple lie groups and the topology of flag manifolds</atitle><jtitle>Journal of dynamical and control systems</jtitle><stitle>J Dyn Control Syst</stitle><date>2013-04-01</date><risdate>2013</risdate><volume>19</volume><issue>2</issue><spage>157</spage><epage>171</epage><pages>157-171</pages><issn>1079-2724</issn><eissn>1573-8698</eissn><abstract>Let S be a subsemigroup with nonempty interior of a connected complex simple Lie group G . It is proved that S = G if S contains a subgroup G (α) ≈ Sl (2, ) generated by the exp , where is the root space of the root α. The proof uses the fact, proved before, that the invariant control set of S is contractible in some flag manifold if S is proper, and exploits the fact that several orbits of G (α) are 2-spheres not null homotopic. The result is applied to revisit a controllability theorem and get some improvements.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10883-013-9168-5</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1079-2724
ispartof Journal of dynamical and control systems, 2013-04, Vol.19 (2), p.157-171
issn 1079-2724
1573-8698
language eng
recordid cdi_proquest_miscellaneous_1429855001
source SpringerLink Journals - AutoHoldings
subjects Calculus of Variations and Optimal Control
Optimization
Control
Control systems
Controllability
Dynamical Systems
Dynamical Systems and Ergodic Theory
Flags
Invariants
Lie groups
Manifolds
Mathematics
Mathematics and Statistics
Orbits
Roots
Systems Theory
Vibration
title Controllability of control systems on complex simple lie groups and the topology of flag manifolds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T17%3A30%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controllability%20of%20control%20systems%20on%20complex%20simple%20lie%20groups%20and%20the%20topology%20of%20flag%20manifolds&rft.jtitle=Journal%20of%20dynamical%20and%20control%20systems&rft.au=dos%20Santos,%20Ariane%20L.&rft.date=2013-04-01&rft.volume=19&rft.issue=2&rft.spage=157&rft.epage=171&rft.pages=157-171&rft.issn=1079-2724&rft.eissn=1573-8698&rft_id=info:doi/10.1007/s10883-013-9168-5&rft_dat=%3Cproquest_cross%3E1429855001%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1429855001&rft_id=info:pmid/&rfr_iscdi=true