Controllability of control systems on complex simple lie groups and the topology of flag manifolds

Let S be a subsemigroup with nonempty interior of a connected complex simple Lie group G . It is proved that S = G if S contains a subgroup G (α) ≈ Sl (2, ) generated by the exp , where is the root space of the root α. The proof uses the fact, proved before, that the invariant control set of S is co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of dynamical and control systems 2013-04, Vol.19 (2), p.157-171
Hauptverfasser: dos Santos, Ariane L., Martin, Luiz A. B. San
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let S be a subsemigroup with nonempty interior of a connected complex simple Lie group G . It is proved that S = G if S contains a subgroup G (α) ≈ Sl (2, ) generated by the exp , where is the root space of the root α. The proof uses the fact, proved before, that the invariant control set of S is contractible in some flag manifold if S is proper, and exploits the fact that several orbits of G (α) are 2-spheres not null homotopic. The result is applied to revisit a controllability theorem and get some improvements.
ISSN:1079-2724
1573-8698
DOI:10.1007/s10883-013-9168-5