Metabolic control of puberty: Roles of leptin and kisspeptins

This article is part of a Special Issue “Puberty and Adolescence”. Reproduction is an energy-demanding function. Accordingly, puberty is metabolically gated, as a means to prevent fertility in conditions of energy insufficiency. In addition, obesity has been shown to impact the timing of puberty and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hormones and behavior 2013-07, Vol.64 (2), p.187-194
Hauptverfasser: Sanchez-Garrido, Miguel A., Tena-Sempere, Manuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article is part of a Special Issue “Puberty and Adolescence”. Reproduction is an energy-demanding function. Accordingly, puberty is metabolically gated, as a means to prevent fertility in conditions of energy insufficiency. In addition, obesity has been shown to impact the timing of puberty and may be among the causes for the earlier trends of pubertal age reported in various countries. The metabolic control of puberty in such a spectrum of situations, ranging from energy deficit to extreme overweight, is the result of the concerted action of different peripheral hormones and central transmitters that sense the metabolic state of the organism and transmit this information to the various elements of the reproductive axis, mainly the GnRH neurons. Among the peripheral signals involved, the adipose hormone, leptin, is known to play an essential role in the regulation of puberty, especially in females. Yet, although it is clear that the effects of leptin on puberty onset are predominantly permissive and mainly conducted at central (hypothalamic) levels, the primary sites and mechanisms of action of leptin within the reproductive brain remain unsolved. In this context, neurons expressing kisspeptins, the products of the Kiss1 gene that have emerged recently as essential upstream regulators of GnRH neurons, operate as key sensors of the metabolic state and funnel of the reproductive effects of leptin. Yet, much debate has arisen recently on whether the putative actions of leptin on the Kiss1 system are actually indirect and/or may primarily target Kiss1-independent pathways, such as those originating from the ventral premmamilary nucleus. Moreover, evidence has been presented for extra-hypothalamic or peripheral actions of leptin, including direct gonadal effects, which may contribute to the metabolic control of reproduction in extreme body weight conditions. In this work, we will critically review the experimental evidence supporting a role of leptin, kisspeptin and putatively related pathways in the concerted control of puberty by energy balance and metabolism. ► Puberty is metabolically gated; it occurs only if sufficient fuel stores are available. ► Leptin plays a permissive role in puberty, especially in females; threshold levels are needed for puberty to proceed. ► Kiss1 neurons sense and transmit metabolic information to GnRH neurons ► Leptin stimulates Kiss1 neurons likely via indirect actions (mainly). ► Leptin targets also other circuits (e.g. the
ISSN:0018-506X
1095-6867
DOI:10.1016/j.yhbeh.2013.01.014