An Australian pyro-tornadogenesis event
On 18 January 2003, fires had a devastating impact on Australia’s capital, Canberra. A series of reviews and scientific studies have examined the events of that day and indicate that the worst impacts were due to a series of violent pyro-convective events and resultant pyro-cumulonmibi. These couple...
Gespeichert in:
Veröffentlicht in: | Natural hazards (Dordrecht) 2013-02, Vol.65 (3), p.1801-1811 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | On 18 January 2003, fires had a devastating impact on Australia’s capital, Canberra. A series of reviews and scientific studies have examined the events of that day and indicate that the worst impacts were due to a series of violent pyro-convective events and resultant pyro-cumulonmibi. These coupled fire–atmosphere events are much more energetic than normal fires. In one instance, an intense pyro-convective cell developed a tornado. We demonstrate that this was indeed a tornado, the first confirmed pyro-tornadogenesis in Australia, and not a fire whirl. Here, we discuss aspects of the formation, evolution and decay of the tornado, which was estimated to have been of at least F2 intensity, highlighting a process that can significantly increase the damage of a wildfire event. |
---|---|
ISSN: | 0921-030X 1573-0840 |
DOI: | 10.1007/s11069-012-0443-7 |