Piperine reverses high fat diet-induced hepatic steatosis and insulin resistance in mice
•Piperine reduces the HFD-induced increases in body and liver weights.•Piperine reverses HFD-induced hepatic steatosis.•Piperine modulates fatty acid oxidation in mice with HFD-induced hepatic steatosis.•Piperine reverses HFD-induced insulin resistance in mice.•Piperine treatment improves insulin si...
Gespeichert in:
Veröffentlicht in: | Food chemistry 2013-12, Vol.141 (4), p.3627-3635 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | •Piperine reduces the HFD-induced increases in body and liver weights.•Piperine reverses HFD-induced hepatic steatosis.•Piperine modulates fatty acid oxidation in mice with HFD-induced hepatic steatosis.•Piperine reverses HFD-induced insulin resistance in mice.•Piperine treatment improves insulin signalling in the liver of HFD-fed mice.
This study examined the effect of piperine on hepatic steatosis and insulin resistance induced in mice by feeding a high-fat diet (HFD) for 13weeks and elucidated potential underlying molecular mechanisms. Administration of piperine (50mg/kg body weight) to mice with HFD-induced hepatic steatosis resulted in a significant increase in plasma adiponectin levels. Also, elevated plasma concentrations of insulin and glucose and hepatic lipid levels induced by feeding a HFD were reversed in mice when they were administered piperine. However, piperine did not reduce body weight and other biochemical markers to an extent where they became equal to the levels found in the CD-fed mice. Piperine reversed HFD-induced down-regulation of adiponecitn-AMP-activated protein kinase (AMPK) signalling molecules which play an important role in mediating lipogenesis, fatty acid oxidation and insulin signalling in the livers of mice. The expressions of lipogenic target genes were decreased, whereas the expression of carnitine palmitoyltransferase 1 (CPT1) gene involved in fatty acid oxidation was increased in the livers of the Pin50 group. Piperine significantly decreased the phosphorylation of insulin receptor substrate-1 (IRS-1) compared with the HFD-fed mice. Administration of piperine appeared to reverse preexisting HFD-induced hepatic steatosis and insulin resistance, probably by activation of adiponectin-AMPK signalling in mice. |
---|---|
ISSN: | 0308-8146 1873-7072 |
DOI: | 10.1016/j.foodchem.2013.06.028 |