PRICING CREDIT DERIVATIVES IN A MARKOV-MODULATED REDUCED-FORM MODEL

Numerous incidents in the financial world have exposed the need for the design and analysis of models for correlated default timings. Some models have been studied in this regard which can capture the feedback in case of a major credit event. We extend the research in the same direction by proposing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of theoretical and applied finance 2013-06, Vol.16 (4), p.1350018-1350018
Hauptverfasser: BANERJEE, TAMAL, GHOSH, MRINAL K., IYER, SRIKANTH K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Numerous incidents in the financial world have exposed the need for the design and analysis of models for correlated default timings. Some models have been studied in this regard which can capture the feedback in case of a major credit event. We extend the research in the same direction by proposing a new family of models having the feedback phenomena and capturing the effects of regime switching economy on the market. The regime switching economy is modeled by a continuous time Markov chain. The Markov chain may also be interpreted to represent the credit rating of the firm whose bond we seek to price. We model the default intensity in a pool of firms using the Markov chain and a risk factor process. We price some single-name and multi-name credit derivatives in terms of certain transforms of the default and loss processes. These transforms can be calculated explicitly in case the default intensity is modeled as a linear function of a conditionally affine jump diffusion process. In such a case, under suitable technical conditions, the price of credit derivatives are obtained as solutions to a system of ODEs with weak coupling, subject to appropriate terminal conditions. Solving the system of ODEs numerically, we analyze the credit derivative spreads and compare their behavior with the nonswitching counterparts. We show that our model can easily incorporate the effects of business cycle. We demonstrate the impact on spreads of the inclusion of rare states that attempt to capture a tight liquidity situation. These states are characterized by low floating interest rate, high default intensity rate, and high volatility. We also model the effects of firm restructuring on the credit spread, in case of a default.
ISSN:0219-0249
1793-6322
DOI:10.1142/S0219024913500180