Targeted delivery of Neurogenin-2 protein in the treatment for cerebral ischemia-reperfusion injury
Abstract Neurogenin-2 (Ngn2), as a proneural gene that promotes the survival and differentiation of neural precursor cells, is an attractive candidate for therapy against cerebral ischemia-reperfusion injury. However, the delivery approach limits its clinical application. To deliver Ngn2 protein int...
Gespeichert in:
Veröffentlicht in: | Biomaterials 2013-11, Vol.34 (34), p.8786-8797 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract Neurogenin-2 (Ngn2), as a proneural gene that promotes the survival and differentiation of neural precursor cells, is an attractive candidate for therapy against cerebral ischemia-reperfusion injury. However, the delivery approach limits its clinical application. To deliver Ngn2 protein into the cerebral ischemic region and exert a therapeutic effect on injured neurons after ischemia, we here reported that the fusion protein TAT-LBD-Ngn2 was constructed by fusing a transactivator of transcription (TAT) domain and a laminin-binding domain (LBD) to Ngn2. TAT-LBD-Ngn2 promoted the outgrowth of neuronal neurite, increased the survival rate and alleviated apoptosis of hippocampal neurons exposed to oxygen glucose deprivation in vitro . Furthermore, a focal cerebral ischemia model in C57BL/6 mice showed that TAT-LBD-Ngn2 efficiently crossed the blood brain barrier, aggregated in the ischemic zone and was consistently incorporated into neurons. Moreover, TAT-LBD-Ngn2 transduced into brains attenuated neuronal degeneration and apoptosis in the ischemic zone. TAT-LBD-Ngn2 treatment resulted in a reduction of infarct volume that was associated with a parallel improvement in neurological functional outcomes after reperfusion. In conclusion, the targeted delivery of TAT-LBD-Ngn2 into the ischemic zone attenuated cerebral ischemia-reperfusion injury through the inhibition of neuronal degeneration and apoptosis, suggesting that TAT-LBD-Ngn2 is a promising target candidate for the treatment of ischemic stroke. |
---|---|
ISSN: | 0142-9612 1878-5905 |
DOI: | 10.1016/j.biomaterials.2013.07.076 |