The therapeutic effect of vascular endothelial growth factor gene- or heme oxygenase-1 gene-modified endothelial progenitor cells on neovascularization of rat hindlimb ischemia model

Objective To explore the therapeutic potential of endothelial progenitor cells (EPCs) transfected with vascular endothelial growth factor A (VEGFA) and heme oxygenase-1 (HO-1) on rat hindlimb ischemia model. Methods Eukaryotic expression vectors encoding VEGFA or HO-1 were constructed and introduced...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of vascular surgery 2013-09, Vol.58 (3), p.756-765.e2
Hauptverfasser: Long, Jianting, MD, PhD, Wang, Sanming, MD, PhD, Zhang, Yuanqi, MD, PhD, Liu, Xiangxia, MD, PhD, Zhang, Hui, MD, PhD, Wang, Shenming, MD, PhD
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Objective To explore the therapeutic potential of endothelial progenitor cells (EPCs) transfected with vascular endothelial growth factor A (VEGFA) and heme oxygenase-1 (HO-1) on rat hindlimb ischemia model. Methods Eukaryotic expression vectors encoding VEGFA or HO-1 were constructed and introduced into EPCs isolated from rat bone marrow. In total, 150 Sprague Dawley rat hindlimb ischemia models were established and randomized into five groups which were injected via tail vein with phosphate-buffered saline (PBS), nontransfected EPCs, VEGFA-modified EPCs, HO-1-modified EPCs, and both VEGFA- and HO-1-modified EPCs, respectively. The microvessel density, the expressions of VEGFA and HO-1 in the ischemic limbs, the recovery of blood flow as evaluated by laser-Doppler perfusion imaging, and the rate of limb salvage were compared among different groups. Results Transplantation of both VEGFA- and HO-1-modified EPCs in recipient rats significantly increased the microvessel density (expressed as capillaries/m2 at day 21 after operation, group vascular endothelial growth factor (VEGF)+HO-1, 357 ± 14.1; group VEGF, 253.7 ± 9.9; group HO-1, 255.5 ± 12.5; group EPC, 210.7 ± 10.3; group PBS, 144.3 ± 9.3; P   either VEGFA- or HO-1-modified EPC alone > nontransfected EPC > PBS. Conclusions VEGFA-modified EPC and HO-1-modified EPC synergized with each other in promoting angiogenesis in ischemic limbs of rat hindlimb ischemia model. In addition to VEGF, the introduction of HO-1 in EPC-based transplantation may serve as a novel and useful therapeutic strategy for ischemic disease of lower extremity.
ISSN:0741-5214
1097-6809
DOI:10.1016/j.jvs.2012.11.096