Biological Responses to Activated Carbon Amendments in Sediment Remediation

Sorbent amendment with activated carbon (AC) is a novel in situ management strategy for addressing human and ecological health risks posed by hydrophobic organic chemicals (HOCs) in sediments and soils. A large body of literature shows that AC amendments can reduce bioavailability of sediment-associ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2013-07, Vol.47 (14), p.7595-7607
Hauptverfasser: Janssen, Elisabeth M.-L, Beckingham, Barbara A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sorbent amendment with activated carbon (AC) is a novel in situ management strategy for addressing human and ecological health risks posed by hydrophobic organic chemicals (HOCs) in sediments and soils. A large body of literature shows that AC amendments can reduce bioavailability of sediment-associated HOCs by more than 60–90%. Empirically derived biodynamic models can predict bioaccumulation in benthic invertebrates within a factor of 2, allowing for future scenarios under AC amendment to be estimated. Higher AC dose and smaller AC particle size further reduce bioaccumulation of HOCs but may induce stress in some organisms. Adverse ecotoxicity response to AC exposure was observed in one-fifth of 82 tests, including changes in growth, lipid content, behavior, and survival. Negative effects on individual species and benthic communities appear to depend on the characteristics of the sedimentary environment and the AC amendment strategy (e.g., dose and particle size). More research is needed to evaluate reproductive end points, bacterial communities, and plants, and to link species- and community-level responses to amendment. In general, the ability of AC to effectively limit the mobility of HOCs in aquatic environments may outshine potential negative secondary effects, and these outcomes must be held in comparison to traditional remediation approaches.
ISSN:0013-936X
1520-5851
DOI:10.1021/es401142e