Pedigree and genomic analyses of feed consumption and residual feed intake in laying hens

Efficiency of production is increasingly important with the current escalation of feed costs and demands to minimize the environmental footprint. The objectives of this study were 1) to estimate heritabilities for daily feed consumption and residual feed intake and their genetic correlations with pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Poultry science 2013-09, Vol.92 (9), p.2270-2275
Hauptverfasser: Wolc, Anna, Arango, Jesus, Jankowski, Tomasz, Settar, Petek, Fulton, Janet E, O'Sullivan, Neil P, Fernando, Rohan, Garrick, Dorian J, Dekkers, Jack C M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Efficiency of production is increasingly important with the current escalation of feed costs and demands to minimize the environmental footprint. The objectives of this study were 1) to estimate heritabilities for daily feed consumption and residual feed intake and their genetic correlations with production and egg-quality traits; 2) to evaluate accuracies of estimated breeding values from pedigree- and marker-based prediction models; and 3) to localize genomic regions associated with feed efficiency in a brown egg layer line. Individual feed intake data collected over 2-wk trial periods were available for approximately 6,000 birds from 8 generations. Genetic parameters were estimated with a multitrait animal model; methods BayesB and BayesCπ were used to estimate marker effects and find genomic regions associated with feed efficiency. Using pedigree information, feed efficiency was found to be moderately heritable (h(2) = 0.46 for daily feed consumption and 0.47 for residual feed intake). Hens that consumed more feed and had greater residual feed intake (lower efficiency) had a genetic tendency to lay slightly more eggs with greater yolk weights and albumen heights. Regions on chromosomes 1, 2, 4, 7, 13, and Z were found to be associated with feed intake and efficiency. The accuracy from genomic prediction was higher and more persistent (better maintained across generations) than that from pedigree-based prediction. These results indicate that genomic selection can be used to improve feed efficiency in layers.
ISSN:0032-5791
DOI:10.3382/ps.2013-03085