Sparse ACEKF for phase reconstruction
We propose a novel low-complexity recursive filter to efficiently recover quantitative phase from a series of noisy intensity images taken through focus. We first transform the wave propagation equation and nonlinear observation model (intensity measurement) into a complex augmented state space mode...
Gespeichert in:
Veröffentlicht in: | Optics express 2013-07, Vol.21 (15), p.18125-18137 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose a novel low-complexity recursive filter to efficiently recover quantitative phase from a series of noisy intensity images taken through focus. We first transform the wave propagation equation and nonlinear observation model (intensity measurement) into a complex augmented state space model. From the state space model, we derive a sparse augmented complex extended Kalman filter (ACEKF) to infer the complex optical field (amplitude and phase), and find that it converges under mild conditions. Our proposed method has a computational complexity of N(z)N logN and storage requirement of O(N), compared with the original ACEKF method, which has a computational complexity of O(NzN(3)) and storage requirement of O(N(2)), where Nz is the number of images and N is the number of pixels in each image. Thus, it is efficient, robust and recursive, and may be feasible for real-time phase recovery applications with high resolution images. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.21.018125 |