TM5275 prolongs secreted tissue plasminogen activator retention and enhances fibrinolysis on vascular endothelial cells

Abstract Introduction Elevated plasminogen activator inhibitor-1 (PAI-1) reduces fibrinolytic potential in plasma, contributing to thrombotic disease. Thus, inhibiting PAI-1 activity is clinically desirable. We recently demonstrated that tissue plasminogen activator (tPA) remains on the surface of v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Thrombosis research 2013-07, Vol.132 (1), p.100-105
Hauptverfasser: Yasui, Hideki, Suzuki, Yuko, Sano, Hideto, Suda, Takafumi, Chida, Kingo, Dan, Takashi, Miyata, Toshio, Urano, Tetsumei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Introduction Elevated plasminogen activator inhibitor-1 (PAI-1) reduces fibrinolytic potential in plasma, contributing to thrombotic disease. Thus, inhibiting PAI-1 activity is clinically desirable. We recently demonstrated that tissue plasminogen activator (tPA) remains on the surface of vascular endothelial cells (VECs) after secretion in a heavy-chain dependent manner, which is essential for high fibrinolytic activity on the surface of VECs, and that PAI-1 dissociates retained tPA from the cell surface as a result of high-molecular weight complex formation. Based on the model whereby amounts of tPA and its equilibrium with PAI-1 dynamically change after exocytosis, we examined how TM5275, a newly synthesized small molecule PAI-1 inhibitor, modulated tPA retention and VEC surface-derived fibrinolytic activity using microscopic techniques. Materials and methods The effects of TM5275 on the kinetics of the secretion and retention of green fluorescent protein (GFP)-tagged tPA (tPA-GFP) on VECs were analyzed using total internal reflection fluorescence microscopy. The effects of TM5275 on the generation of plasmin activity were evaluated by both plasminogen accumulation and fibrin clot lysis on tPA-GFP-expressing VECs using confocal laser scanning microscopy. Results TM5275 at concentrations of 20 and 100 μM significantly prolonged the retention of tPA-GFP on VECs by inhibiting tPA-GFP-PAI-1 high-molecular-weight complex formation. TM5275 enhanced the time-dependent accumulation of plasminogen as well as the dissolution of fibrin clots on and around the tPA-GFP-expressing cells. Conclusions The profibrinolytic effects of TM5275 were clearly demonstrated by the prolongation of tPA retention and enhancement of plasmin generation on the VEC surface as a result of PAI-1 inhibition.
ISSN:0049-3848
1879-2472
DOI:10.1016/j.thromres.2013.04.003