Suppression of wind-induced hydrodynamics in ponds
Significant economies of scale are an incentive for the design of large salt gradient solar ponds; however, wind induced mixing is more difficult to suppress on larger ponds because of the greater distance (or fetch) between dikes. Quantitative data are needed on the hydrodynamic effects of wind act...
Gespeichert in:
Veröffentlicht in: | Solar energy 1985, Vol.35 (1), p.21-30 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Significant economies of scale are an incentive for the design of large salt gradient solar ponds; however, wind induced mixing is more difficult to suppress on larger ponds because of the greater distance (or fetch) between dikes. Quantitative data are needed on the hydrodynamic effects of wind action on ponds protected with wave suppression systems.
Experiments conducted at the Utah Water Research Laboratory measured wave height, wave length, and depth of disturbance of water in a test flume exposed to various air flows and wave suppression devices. Water depth was 30 cm in the 12.2-m-long test flume having a cross section 61 cm square. Air velocities ranged from 4.50 to 11.8 m/s. Experiments also were conducted with a sharply stratified system consisting of 15 cm of fresh water floating on 15 cm of salt brine in which the air velocities were observed at the point where gravity return currents and wave motion occur at the density interface.
Results indicate that circulation currents may persist even if waves are effectively suppressed. |
---|---|
ISSN: | 0038-092X 1471-1257 |
DOI: | 10.1016/0038-092X(85)90033-7 |