Mechanisms and functions of theta rhythms
The theta rhythm is one of the largest and most sinusoidal activity patterns in the brain. Here I survey progress in the field of theta rhythms research. I present arguments supporting the hypothesis that theta rhythms emerge owing to intrinsic cellular properties yet can be entrained by several the...
Gespeichert in:
Veröffentlicht in: | Annual review of neuroscience 2013-07, Vol.36 (1), p.295-312 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The theta rhythm is one of the largest and most sinusoidal activity patterns in the brain. Here I survey progress in the field of theta rhythms research. I present arguments supporting the hypothesis that theta rhythms emerge owing to intrinsic cellular properties yet can be entrained by several theta oscillators throughout the brain. I review behavioral correlates of theta rhythms and consider how these correlates inform our understanding of theta rhythms' functions. I discuss recent work suggesting that one function of theta is to package related information within individual theta cycles for more efficient spatial memory processing. Studies examining the role of theta phase precession in spatial memory, particularly sequence retrieval, are also summarized. Additionally, I discuss how interregional coupling of theta rhythms facilitates communication across brain regions. Finally, I conclude by summarizing how theta rhythms may support cognitive operations in the brain, including learning. |
---|---|
ISSN: | 0147-006X 1545-4126 |
DOI: | 10.1146/annurev-neuro-062012-170330 |