Effect of L-cysteine on remote organ injury in rats with severe acute pancreatitis induced by bile-pancreatic duct obstruction

BACKGROUND: Remote organ failure occurs in cases of acute pancreatitis (AP); however, the reports on AP induced by pancreatic duct obstruction are rare. In this study we determined the effect of L-cysteine on pancreaticobiliary inflammation and remote organ damage in rats after pancreaticobiliary du...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hepatobiliary & pancreatic diseases international 2013-08, Vol.12 (4), p.428-435
Hauptverfasser: Yang, Li-Juan, Wan, Rong, Shen, Jia-Qing, Shen, Jie, Wang, Xing-Peng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:BACKGROUND: Remote organ failure occurs in cases of acute pancreatitis (AP); however, the reports on AP induced by pancreatic duct obstruction are rare. In this study we determined the effect of L-cysteine on pancreaticobiliary inflammation and remote organ damage in rats after pancreaticobiliary duct ligation (PBDL). METHODS: AP was induced by PBDL in rats with 5/0 silk Sixty rats were randomly divided into 4 groups. Groups A and B were sham-operated groups that received injections of saline or L-cysteine (10 mg/kg) intraperitoneally (15 rats in each group). Groups C and D were PBDL groups that received injections of saline or L-cysteine (10 mg/kg) intraperitoneally (15 rats in each group). The tissue samples of the pancreas and remote organs such as the lung, liver, intestine and kidney were subsequently examined for pathological changes under a light microscope. The samples were also stored for the determination of malondialdehyde and glutathione levels. Blood urea nitrogen (BUN), plasma amylase, ALT and AST levels were determined spectrophotometrically using an automated analyzer. Also, we evaluated the effect of L-cysteine on remote organ injury in rats with AP induced by retrograde infusion of 3.5% sodium taurocholate (NaTc) into the bile-pancreatic duct. RESULTS: Varying degrees of injury in the pancreas, lung, liver intestine and kidney were observed in the rats 24 hours after PBDL. The severity of injury to the lung, liver and intestine was attenuated, while injury status was not changed significantly in the pancreas and kidney after L-cysteine treatment. Oxidativestress was also affected by L-cysteine in PBDL-treated rats. The concentration of tissue malondialdehyde decreased in the pancreas and remote organs of PBDL and L-cysteine administrated rats, and the concentration of glutathione increased more significantly than that of the model control group. However, L-cysteine administration reduced the severity of injury in remote organs but not in the pancreas in rats with NaTc-induced AP. CONCLUSION: L-cysteine treatment attenuated multiple organ damage at an early stage of AP in rats and modulated the oxidant/antioxidant imbalance.
ISSN:1499-3872
DOI:10.1016/S1499-3872(13)60067-3