Production, mechanical properties and in vitro biocompatibility of highly aligned porous poly(ε-caprolactone) (PCL)/hydroxyapatite (HA) scaffolds
We produced highly aligned porous poly(ε-caprolactone) (PCL)/hydroxyapatite (HA) scaffolds by unidirectionally freezing PCL/HA solutions with various HA contents (0, 5, 10 and 20 wt% in relation to the PCL polymer) and evaluated their mechanical properties and in vitro biocompatibility to examine th...
Gespeichert in:
Veröffentlicht in: | Journal of porous materials 2013-08, Vol.20 (4), p.701-708 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We produced highly aligned porous poly(ε-caprolactone) (PCL)/hydroxyapatite (HA) scaffolds by unidirectionally freezing PCL/HA solutions with various HA contents (0, 5, 10 and 20 wt% in relation to the PCL polymer) and evaluated their mechanical properties and in vitro biocompatibility to examine their potential applications in bone tissue engineering. All the prepared scaffolds had a highly aligned porous structure, in which the HA particles were uniformly dispersed in the PCL walls. The elastic modulus of the PCL/HA scaffolds significantly increased from 0.12 ± 0.02 to 2.65 ± 0.05 MPa with increasing initial HA content from 0 to 20 wt%, whereas the pore size decreased from 9.2 ± 0.7 to 4.2 ± 0.8 μm. In addition, the PCL/HA scaffolds showed considerably enhanced in vitro cellular responses that were assessed in terms of cell attachment, proliferation and osteoblastic differentiation. |
---|---|
ISSN: | 1380-2224 1573-4854 |
DOI: | 10.1007/s10934-012-9644-4 |