imMens: Real-time Visual Querying of Big Data

Data analysts must make sense of increasingly large data sets, sometimes with billions or more records. We present methods for interactive visualization of big data, following the principle that perceptual and interactive scalability should be limited by the chosen resolution of the visualized data,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer graphics forum 2013-06, Vol.32 (3pt4), p.421-430
Hauptverfasser: Liu, Zhicheng, Jiang, Biye, Heer, Jeffrey
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Data analysts must make sense of increasingly large data sets, sometimes with billions or more records. We present methods for interactive visualization of big data, following the principle that perceptual and interactive scalability should be limited by the chosen resolution of the visualized data, not the number of records. We first describe a design space of scalable visual summaries that use data reduction methods (such as binned aggregation or sampling) to visualize a variety of data types. We then contribute methods for interactive querying (e.g., brushing & linking) among binned plots through a combination of multivariate data tiles and parallel query processing. We implement our techniques in imMens, a browser‐based visual analysis system that uses WebGL for data processing and rendering on the GPU. In benchmarks imMens sustains 50 frames‐per‐second brushing & linking among dozens of visualizations, with invariant performance on data sizes ranging from thousands to billions of records.
ISSN:0167-7055
1467-8659
DOI:10.1111/cgf.12129