Modeling of a vertical tunneling graphene heterojunction field-effect transistor
Vertical tunneling field-effect-transistor (FET) based on graphene heterojunctions with layers of hBN is simulated by self-consistent quantum transport simulations. It is found that the asymmetric p-type and n-type conduction is due to work function difference between the graphene contact and the tu...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2012-07, Vol.101 (3) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Vertical tunneling field-effect-transistor (FET) based on graphene heterojunctions with layers of hBN is simulated by self-consistent quantum transport simulations. It is found that the asymmetric p-type and n-type conduction is due to work function difference between the graphene contact and the tunneling channel material. Modulation of the bottom-graphene-contact plays an important role in determining the switching characteristic of the device. Due to the electrostatic short-channel-effects stemming from the vertical-FET structure, the output I-V characteristics do not saturate. The scaling behaviors the vertical-FET as a function of the gate insulator thickness and the thickness of the tunneling channel material are examined. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.4737394 |