Control of Roll-to-Roll Web Systems via Differential Flatness and Dynamic Feedback Linearization

A novel method based on the techniques of differential flatness and dynamic feedback linearization is proposed to simultaneously control web tension, web transport velocity, and web displacement in the longitudinal direction in roll-to-roll web systems. Literature has mostly focused on the control o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on control systems technology 2013-07, Vol.21 (4), p.1309-1317
Hauptverfasser: Dong Eui Chang, Levine, J., Jeongdai Jo, Kyung-Hyun Choi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A novel method based on the techniques of differential flatness and dynamic feedback linearization is proposed to simultaneously control web tension, web transport velocity, and web displacement in the longitudinal direction in roll-to-roll web systems. Literature has mostly focused on the control of web tension and velocity, but has paid little attention to the control of web displacement. However, the control of the longitudinal displacement of web is important for register error reduction in multicolor image printing or multilayer flexible electronics printing. Hence, our result adds a new dimension to the control of roll-to-roll web systems. First, the dynamics of a class of roll-to-roll systems are reviewed and transformed into a form in which the longitudinal displacement of web can be observed directly. Second, the roll-to-roll systems are constructively shown to be differentially flat and thus dynamically feedback linearizable to chains of integrators. Third, a procedure for tracking control synthesis is provided for reference signals that are parameterized by flat output. The closed-loop system is shown to asymptotically track the reference inputs even in the presence of initial tracking errors and disturbances over finite time intervals. Last, a simulation study is carried out to illustrate the excellent tracking performance of the closed-loop system.
ISSN:1063-6536
1558-0865
DOI:10.1109/TCST.2012.2204057