Tapping insertional torque allows prediction for better pedicle screw fixation and optimal screw size selection
Abstract Background context There is currently no reliable technique for intraoperative assessment of pedicle screw fixation strength and optimal screw size. Several studies have evaluated pedicle screw insertional torque (IT) and its direct correlation with pullout strength. However, there is limit...
Gespeichert in:
Veröffentlicht in: | The spine journal 2013-08, Vol.13 (8), p.957-965 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract Background context There is currently no reliable technique for intraoperative assessment of pedicle screw fixation strength and optimal screw size. Several studies have evaluated pedicle screw insertional torque (IT) and its direct correlation with pullout strength. However, there is limited clinical application with pedicle screw IT as it must be measured during screw placement and rarely causes the spine surgeon to change screw size. To date, no study has evaluated tapping IT, which precedes screw insertion, and its ability to predict pedicle screw pullout strength. Purpose The objective of this study was to investigate tapping IT and its ability to predict pedicle screw pullout strength and optimal screw size. Study design In vitro human cadaveric biomechanical analysis. Methods Twenty fresh-frozen human cadaveric thoracic vertebral levels were prepared and dual-energy radiographic absorptiometry scanned for bone mineral density (BMD). All specimens were osteoporotic with a mean BMD of 0.60±0.07 g/cm2 . Five specimens (n=10) were used to perform a pilot study, as there were no previously established values for optimal tapping IT. Each pedicle during the pilot study was measured using a digital caliper as well as computed tomography measurements, and the optimal screw size was determined to be equal to or the first size smaller than the pedicle diameter. The optimal tap size was then selected as the tap diameter 1 mm smaller than the optimal screw size. During optimal tap size insertion, all peak tapping IT values were found to be between 2 in-lbs and 3 in-lbs. Therefore, the threshold tapping IT value for optimal pedicle screw and tap size was determined to be 2.5 in-lbs, and a comparison tapping IT value of 1.5 in-lbs was selected. Next, 15 test specimens (n=30) were measured with digital calipers, probed, tapped, and instrumented using a paired comparison between the two threshold tapping IT values (Group 1: 1.5 in-lbs; Group 2: 2.5 in-lbs), randomly assigned to the left or right pedicle on each specimen. Each pedicle was incrementally tapped to increasing size (3.75, 4.00, 4.50, and 5.50 mm) until the threshold value was reached based on the assigned group. Pedicle screw size was determined by adding 1 mm to the tap size that crossed the threshold torque value. Torque measurements were recorded with each revolution during tap and pedicle screw insertion. Each specimen was then individually potted and pedicle screws pulled out “in-line” with |
---|---|
ISSN: | 1529-9430 1878-1632 |
DOI: | 10.1016/j.spinee.2013.03.012 |