Activation of receptor for advanced glycation end products contributes to aortic remodeling and endothelial dysfunction in sinoaortic denervated rats
Abstract Objective The aim of present study was to test the hypothesis that activation of receptor for advanced glycation end products (RAGE) pathway contributes to aortic remodeling and endothelial dysfunction in sinoaortic denervated (SAD) rats. Methods and results Experiment 1 : 8 weeks after sin...
Gespeichert in:
Veröffentlicht in: | Atherosclerosis 2013-08, Vol.229 (2), p.287-294 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract Objective The aim of present study was to test the hypothesis that activation of receptor for advanced glycation end products (RAGE) pathway contributes to aortic remodeling and endothelial dysfunction in sinoaortic denervated (SAD) rats. Methods and results Experiment 1 : 8 weeks after sinoaortic denervation, aortas were removed for measurement of AGE/RAGE pathway. Sinoaortic denervation in rats resulted in enhanced activity of aldose reductase, reduced activity of glyoxalase 1, accumulation of methylglyoxal and AGE, and upregulated expression of RAGE in aortas. Experiment 2 : 5 weeks after sinoaortic denervation, the rats received intraperitoneal injections of 500 μg soluble RAGE (sRAGE) daily for 3 weeks. Treatment of SAD rats with sRAGE attenuated aortic remodeling, marked by reduction in AW/length, wall thickness, proliferation of SMC, and collagen deposition, and improvement of endothelial function. Treatment of SAD rats with sRAGE abated aortic oxidative stress, marked by reduction in formation of malondialdehyde, reactive oxygen species, superoxide, peroxynitrite and 3-nitrotyrosine, and enhancement of ratio of GSH/GSSG. Treatment of SAD rats with sRAGE attenuated aortic mitochondrial dysfunction. Treatment of SAD rats with sRAGE suppressed aortic NFκB nuclear translocation and inflammation. Treatment of SAD rats with sRAGE restored aortic NO formation through upregulating eNOS and dimethylarginine dimethylaminohydrolase-2 and downregulating protein arginine methyltransferase-1. Conclusion Activated RAGE contributed to aortic remodeling and endothelial dysfunction in SAD rats, possibly via induction of oxidative stress and inflammation, impairment of mitochondrial function, and reduction in NO bioavailability. |
---|---|
ISSN: | 0021-9150 1879-1484 |
DOI: | 10.1016/j.atherosclerosis.2013.04.033 |