Long-Distance Bird Migration within South America Revealed by Light-Level Geolocators

Little is known about the timing of migration, migration routes, and migratory connectivity of most of the >230 species of birds that breed at south temperate latitudes of South America and then migrate toward the tropics to overwinter. We used light-level geolocators to track the migration of 3...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Auk 2013-04, Vol.130 (2), p.223-229
Hauptverfasser: Jahn, Alex E, Levey, Douglas J, Cueto, Victor R, Ledezma, Jesús Pinto, Tuero, Diego T, Fox, James W, Masson, Diego
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Little is known about the timing of migration, migration routes, and migratory connectivity of most of the >230 species of birds that breed at south temperate latitudes of South America and then migrate toward the tropics to overwinter. We used light-level geolocators to track the migration of 3 male and 3 female Fork-tailed Flycatchers (Tyrannus savana) captured on their breeding territories in Argentina. All birds initiated fall migration between late January and late February, and migrated 45 to 66 km day-1 in a northwesterly direction through central South America to either one or two wintering areas. Five individuals first spent several weeks (in April and May) in western Amazonia (mainly Peru, northwestern Brazil, and southern Colombia) before moving east to spend the rest of the non-breeding season in central Venezuela and northern Brazil. One individual occupied primarily one wintering area in eastern Colombia, northwestern Brazil, and southwestern Venezuela. Fall migration took approximately 7–12 weeks to complete and covered a distance of 2,888–4,105 km. We did not analyze spring migration data because of broad overlap with the austral spring equinox. These results are the first data on wintering locations, migration timing, and routes of individual migrant passerine birds that breed in South America. Given the general lack of similar data for practically all migratory birds that breed in South America, geolocator technology has the potential to revolutionize our understanding of how birds migrate—and the threats they face—on South America's rapidly changing landscape.
ISSN:0004-8038
1938-4254
2732-4613
DOI:10.1525/auk.2013.12077