Precursor Transformation during Molecular Oxidation Catalysis with Organometallic Iridium Complexes
We present evidence for Cp* being a sacrificial placeholder ligand in the [Cp*IrIII(chelate)X] series of homogeneous oxidation catalysts. UV–vis and 1H NMR profiles as well as MALDI-MS data show a rapid and irreversible loss of the Cp* ligand under reaction conditions, which likely proceeds through...
Gespeichert in:
Veröffentlicht in: | J Am Chem Soc 2013-07, Vol.135 (29), p.10837-10851 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present evidence for Cp* being a sacrificial placeholder ligand in the [Cp*IrIII(chelate)X] series of homogeneous oxidation catalysts. UV–vis and 1H NMR profiles as well as MALDI-MS data show a rapid and irreversible loss of the Cp* ligand under reaction conditions, which likely proceeds through an intramolecular inner-sphere oxidation pathway reminiscent of the reductive in situ elimination of diolefin placeholder ligands in hydrogenation catalysis by [(diene)MI(L,L′)]+ (M = Rh and Ir) precursors. When oxidatively stable chelate ligands are bound to the iridium in addition to the Cp*, the oxidized precursors yield homogeneous solutions with a characteristic blue color that remain active in both water- and CH-oxidation catalysis without further induction period. Electrophoresis suggests the presence of well-defined Ir-cations, and TEM-EDX, XPS, 17O NMR, and resonance-Raman spectroscopy data are most consistent with the molecular identity of the blue species to be a bis-μ-oxo di-iridium(IV) coordination compound with two waters and one chelate ligand bound to each metal. DFT calculations give insight into the electronic structure of this catalyst resting state, and time-dependent simulations agree with the assignments of the experimental spectroscopic data. [(cod)IrI(chelate)] precursors bearing the same chelate ligands are shown to be equally effective precatalysts for both water- and CH-oxidations using NaIO4 as chemical oxidant. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/ja4048762 |