Poly(N-isopropylacrylamide) hydrogels with interpenetrating multiwalled carbon nanotubes for cell sheet engineering

Abstract Hydrogels have been developed as artificial extracellular matrixes (ECMs) to mimic native tissue microenvironments for various applications. Unfortunately, poly(N-isopropylacrylamide) (PNIPAAM)-based hydrogels are not suitable for cell culturing and cell sheet preparation. Carbon nanotubes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2013-10, Vol.34 (30), p.7328-7334
Hauptverfasser: Chen, Yu-Shuan, Tsou, Pei-Chun, Lo, Jem-Mau, Tsai, Hsieh-Chih, Wang, Yan-Zhen, Hsiue, Ging-Ho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Hydrogels have been developed as artificial extracellular matrixes (ECMs) to mimic native tissue microenvironments for various applications. Unfortunately, poly(N-isopropylacrylamide) (PNIPAAM)-based hydrogels are not suitable for cell culturing and cell sheet preparation. Carbon nanotubes (CNTs), with their mechanical strength and electrical conductivity, have been considered as additives to increase the applicability of hydrogels to cell encapsulation and advance cardiac electrophysiological functions. A simple method for fabrication of PNIPAAM hydrogels interpenetrated with multiwalled CNTs (MWCNTs) as substrates for cell sheet preparation is reported. The results demonstrate that PNIPAAM hydrogels with interpenetrating MWCNTs still exhibit thermosensitive behavior. It is also found that epithelial Madin–Darby canine kidney (MDCK) cells can only attach and proliferate on MWCNT-interpenetrated PNIPAAM hydrogels. Furthermore, the PNIPAAM hydrogels with MWCNTs possess higher elastic moduli and hydrophobicities than those without MWCNTs, suggesting these two characteristics are necessary for the cells to attach to the hydrogel surfaces. Moreover, cell sheets can only be harvested from PNIPAAM hydrogels with MWCNTs because of their high ratio of cell attachment. Thus, this simple method provides sufficient mechanical strength to PNIPAAM hydrogels so that anchorage-dependent cells can be cultivated and provides a superior system for preparing cell sheets.
ISSN:0142-9612
1878-5905
DOI:10.1016/j.biomaterials.2013.06.017