Development of a Novel Long-Acting Antidiabetic FGF21 Mimetic by Targeted Conjugation to a Scaffold Antibody
Fibroblast growth factor (FGF)21 improves insulin sensitivity, reduces body weight, and reverses hepatic steatosis in preclinical species. We generated long-acting FGF21 mimetics by site-specific conjugation of the protein to a scaffold antibody. Linking FGF21 through the C terminus decreased bioact...
Gespeichert in:
Veröffentlicht in: | The Journal of pharmacology and experimental therapeutics 2013-08, Vol.346 (2), p.270-280 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Fibroblast growth factor (FGF)21 improves insulin sensitivity, reduces body weight, and reverses hepatic steatosis in preclinical species. We generated long-acting FGF21 mimetics by site-specific conjugation of the protein to a scaffold antibody. Linking FGF21 through the C terminus decreased bioactivity, whereas bioactivity was maintained by linkage to selected internal positions. In mice, these CovX-Bodies retain efficacy while increasing half-life up to 70-fold compared with wild-type FGF21. A preferred midlinked CovX-Body, CVX-343, demonstrated enhanced in vivo stability in preclinical species, and a single injection improved glucose tolerance for 6 days in ob/ob mice. In diet-induced obese mice, weekly doses of CVX-343 reduced body weight, blood glucose, and lipids levels. In db/db mice, CVX-343 increased glucose tolerance, pancreatic β-cell mass, and proliferation. CVX-343, created by linkage of the CovX scaffold antibody to the engineered residue A129C of FGF21 protein, demonstrated superior preclinical pharmacodynamics by extending serum half-life of FGF21 while preserving full therapeutic functionality. |
---|---|
ISSN: | 0022-3565 1521-0103 |
DOI: | 10.1124/jpet.113.204420 |