Leaching of brominated flame retardants from TV housing plastics in the presence of dissolved humic matter
In this study, we investigated the contents of several brominated compounds in TV molding plastics, as well as their leaching characteristics in the presence of DHM. The PBDE content was about 3% of the sample weight, and deca-BDE was the most abundant homologue, accounting for over 80% of the total...
Gespeichert in:
Veröffentlicht in: | Chemosphere (Oxford) 2009, Vol.74 (3), p.460-466 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, we investigated the contents of several brominated compounds in TV molding plastics, as well as their leaching characteristics in the presence of DHM. The PBDE content was about 3% of the sample weight, and deca-BDE was the most abundant homologue, accounting for over 80% of the total amount. TBBPA, PBPs and PBBs content was 8100, 4700 and 250
ng/g, respectively. Despite no detection of most of the lower brominated DEs in distilled water, most homologues could be detected in DHM solution, and their solubility increased according to the contact time; those of highly brominated compounds increased to 10 times their maximum solubility in distilled water. Especially, contrary to the relatively faster equilibrium in distilled water, BFR solubility in DHM solution was maintained even after 20 days. In addition, a modified first-order model adequately reflected rapid desorption for each compound in the initial period, but slow desorption afterwards. From an overall perspective, it is clear that hydrophobic BFRs can leach out to a great extent in the presence of DHM, which is a matter of great concern in E&E waste as the potential contaminant source of BFRs, especially in landfills and open dump sites that provide the perfect conditions for exposure of BFRs to abundant DHM. |
---|---|
ISSN: | 0045-6535 1879-1298 |
DOI: | 10.1016/j.chemosphere.2008.08.030 |