Fuzhuanins A and B: The B‑ring Fission Lactones of Flavan-3-ols from Fuzhuan Brick-Tea
Fuzhuan brick-tea is a special dark tea prepared from the leaves of Camellia sinensis var. sinensis. Its production involves a fungal fermentation stage, which forms the unique flavors and functions by a series of biochemical reactions. Our phytochemical research of the material led to the isolation...
Gespeichert in:
Veröffentlicht in: | Journal of agricultural and food chemistry 2013-07, Vol.61 (28), p.6982-6990 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Fuzhuan brick-tea is a special dark tea prepared from the leaves of Camellia sinensis var. sinensis. Its production involves a fungal fermentation stage, which forms the unique flavors and functions by a series of biochemical reactions. Our phytochemical research of the material led to the isolation of two new B-ring fission lactones of flavan-3-ols, fuzhuanins A (1) and B (2). In addition, three other flavan-3-ol derivatives (3–5), three flavone C-glycosides (6–8), eight flavonoid O-glycosides (10–17), five simple phenolics (19–23), two norisoprenoid glycosides (24, 25), two sesquiterpenoids (26, 27), and theobromine (28), as well as two flavonoid anions (9 and 18), were also identified. The structures of these compounds were determined by spectroscopic methods. Compounds 4, 19, 20, 22–24, 26, and 27 were reported for the first time in Camellia spp. and tea. Furthermore, HPLC analysis method was performed to compare the chemical constituents of the before/after fungal fermentation Fuzhuan brick-teas. Compound 1 was indicated as one of the major characteristic constituents generated in the fungal fermentation process. The IC50 value of the antiproliferative activity of 2 on HeLa cells was assayed as 4.48 μM. None of the isolated compounds showed any inhibition activity against the enteric pathogenic microbes at 800 μg/mL by the hole plate diffusion method. |
---|---|
ISSN: | 0021-8561 1520-5118 |
DOI: | 10.1021/jf401724w |