Overexpression of microRNA-223 in rheumatoid arthritis synovium controls osteoclast differentiation

Objectives MicroRNAs, a class of noncoding RNAs, play roles in human diseases. MicroRNA-223 (miR-223) is reported to play critical roles in osteoclastogenesis. The purpose of this study was to analyze the expression pattern of miR-223 in rheumatoid arthritis (RA) synovium and examine the suppression...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Modern rheumatology 2013-07, Vol.23 (4), p.674-685
Hauptverfasser: Shibuya, Hayatoshi, Nakasa, Tomoyuki, Adachi, Nobuo, Nagata, Yoshihiko, Ishikawa, Masakazu, Deie, Masataka, Suzuki, Osami, Ochi, Mitsuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Objectives MicroRNAs, a class of noncoding RNAs, play roles in human diseases. MicroRNA-223 (miR-223) is reported to play critical roles in osteoclastogenesis. The purpose of this study was to analyze the expression pattern of miR-223 in rheumatoid arthritis (RA) synovium and examine the suppression of osteoclastogenesis from human peripheral blood mononuclear cells (PBMC) by overexpression of miR-223. Methods Expression of miR-223 in synovium from RA patients was analyzed by quantitative reverse transcription polymerase chain reaction (RT-PCR) and section in situ hybridization. MiR-223 was overexpressed in an osteoclastogenesis coculture system with PBMC and RA synovial fibroblast. At 3 weeks after transfection of double-stranded miR-223, the formation of tartrate-resistant acid phosphatase (TRAP)-stained multinucleated cells was analyzed to evaluate the inhibitory effect of miR-223 on osteoclastogenesis. Results MiR-223 was more highly expressed in RA synovium than in osteoarthritis (OA) synovium due to the increased number of miR-223-positive cells in RA synovium. MiR-223 was expressed in the superficial and sublining layers, and macrophages, monocytes, and CD4 T cells also expressed miR-223. The number of TRAP-positive multinucleated cells was significantly decreased by overexpression of miR-223 in a dose-dependent manner. The expression of osteoclastogenesis marker genes was significantly down-regulated by miR-223 overexpression. Conclusion MiR-223 is intensely expressed in RA synovium, and overexpression of miR-223 suppresses osteoclastogenesis in vitro. This study demonstrates the possibility of gene therapy with miR-223 to treat bone destruction in RA patients.
ISSN:1439-7595
1439-7609
DOI:10.1007/s10165-012-0710-1