A high-throughput time-resolved mini-silicon photomultiplier with embedded fluorescence lifetime estimation in 0.13 μm CMOS

We describe a miniaturized, high-throughput, time-resolved fluorescence lifetime sensor implemented in a 0.13 m CMOS process, combining single photon detection, multiple channel timing and embedded pre-processing of fluorescence lifetime estimations on a single device. Detection is achieved using an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on biomedical circuits and systems 2012-12, Vol.6 (6), p.562-570
Hauptverfasser: Tyndall, David, Rae, Bruce R, Li, David Day-Uei, Arlt, Jochen, Johnston, Abigail, Richardson, Justin A, Henderson, Robert K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We describe a miniaturized, high-throughput, time-resolved fluorescence lifetime sensor implemented in a 0.13 m CMOS process, combining single photon detection, multiple channel timing and embedded pre-processing of fluorescence lifetime estimations on a single device. Detection is achieved using an array of single photon avalanche diodes (SPADs) arranged in a digital silicon photomultiplier (SiPM) architecture with 400 ps output pulses and a 10% fill-factor. An array of time-to-digital converters (TDCs) with ≈50 ps resolution records up to 8 photon events during each excitation period. Data from the TDC array is then processed using a centre-of-mass method (CMM) pre-calculation to produce fluorescence lifetime estimations in real-time. The sensor is believed to be the first reported implementation of embedded fluorescence lifetime estimation. The system is demonstrated in a practical laboratory environment with measurements of a variety of fluorescent dyes with different single exponential lifetimes, successfully showing the sensor's ability to overcome the classic pile-up limitation of time-correlated single photon counting (TCSPC) by over an order of magnitude.
ISSN:1932-4545
1940-9990
DOI:10.1109/TBCAS.2012.2222639