The rendition of the Atlantic Warm Pool in the reanalyses

The Atlantic Warm Pool (AWP) region, which is comprised of the Gulf of Mexico, Caribbean Sea and parts of the northwestern tropical Atlantic Ocean, is one of the most poorly observed parts of the global oceans. This study compares three ocean reanalyses, namely the Global Ocean Data Assimilation Sys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Climate dynamics 2013-07, Vol.41 (2), p.517-532
Hauptverfasser: Misra, Vasubandhu, Stroman, Ashley, DiNapoli, Steven
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Atlantic Warm Pool (AWP) region, which is comprised of the Gulf of Mexico, Caribbean Sea and parts of the northwestern tropical Atlantic Ocean, is one of the most poorly observed parts of the global oceans. This study compares three ocean reanalyses, namely the Global Ocean Data Assimilation System of National Centers for Environmental Prediction (NCEP), the Climate Forecast System Reanalysis (CFSR) of NCEP, and the Simple Ocean Data Assimilation (SODA) for its AWP variation. The surface temperature in these ocean reanalyses is also compared with that from the Extended Range SST version 3 and Optimally Interpolated SST version 2 SST analyses. In addition we also compare three atmospheric reanalyses: NCEP-NCAR (R1), NCEP-DOE (R2), and CFSR for the associated atmospheric variability with the AWP. The comparison shows that there are important differences in the climatology of the AWP and its interannual variations. There are considerable differences in the subsurface ocean manifestation of the AWP with SODA (CFSR) showing the least (largest) modulation of the subsurface ocean temperatures. The remote teleconnections with the tropical Indian Ocean are also different across the reanalyses. However, all three oceanic reanalyses consistently show the absence of any teleconnection with the eastern equatorial Pacific Ocean. The influence of the AWP on the tropospheric temperature anomalies last for up to a one season lead and it is found to be relatively weak in R1 reanalyses. A simplified SST anomaly equation initially derived for diagnosing El Niño Southern Oscillation variability is adapted for the AWP variations in this study. The analysis of this equation reveals that the main contribution of the SST variation in the AWP region is from the variability of the net heat flux. All three reanalyses consistently show that the role of the ocean advective terms, including that associated with upwelling in the AWP region, is comparatively much smaller. The covariance of the SST tendency in the AWP with the net heat flux is large, with significant contributions from the variations of the surface shortwave and longwave fluxes.
ISSN:0930-7575
1432-0894
DOI:10.1007/s00382-012-1503-0