Improvement of HIV-1 coreceptor tropism prediction by employing selected nucleotide positions of the env gene in a Bayesian network classifier
This study aimed to develop a genotypic method to predict HIV-1 coreceptor usage by employing the nucleotide sequence of the env gene in a tree-augmented naive Bayes (TAN) classifier, and to evaluate its accuracy in prediction compared with other available tools. A wrapper data-mining strategy inter...
Gespeichert in:
Veröffentlicht in: | Journal of antimicrobial chemotherapy 2013-07, Vol.68 (7), p.1471-1485 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study aimed to develop a genotypic method to predict HIV-1 coreceptor usage by employing the nucleotide sequence of the env gene in a tree-augmented naive Bayes (TAN) classifier, and to evaluate its accuracy in prediction compared with other available tools.
A wrapper data-mining strategy interleaved with a TAN algorithm was employed to evaluate the predictor value of every single-nucleotide position throughout the HIV-1 env gene. Based on these results, different nucleotide positions were selected to develop a TAN classifier, which was employed to predict the coreceptor tropism of all the full-length env gene sequences with information on coreceptor tropism currently available at the Los Alamos HIV Sequence Database.
Employing 26 nucleotide positions in the TAN classifier, an accuracy of 95.6%, a specificity (identification of CCR5-tropic viruses) of 99.4% and a sensitivity (identification of CXCR4/dual-tropic viruses) of 80.5% were achieved for the in silico cross-validation. Compared with the phenotypic determination of coreceptor usage, the TAN algorithm achieved more accurate predictions than WebPSSM and Geno2pheno [coreceptor] (P |
---|---|
ISSN: | 0305-7453 1460-2091 |
DOI: | 10.1093/jac/dkt077 |