Effect of temperature on submerged macrophyte litter decomposition within sediments from a large shallow and subtropical freshwater lake

In shallow aquatic systems, the majority of organic matter mineralization occurs in the sediments. Several factors including temperature control mineralization rates, however, the underlying causes of the effects are not well understood in subtropical lakes. In this study, we determined the influenc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hydrobiologia 2013-09, Vol.714 (1), p.131-144
Hauptverfasser: Song, Na, Yan, Zai-Sheng, Cai, Hai-Yuan, Jiang, He-Long
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In shallow aquatic systems, the majority of organic matter mineralization occurs in the sediments. Several factors including temperature control mineralization rates, however, the underlying causes of the effects are not well understood in subtropical lakes. In this study, we determined the influence of temperature on organic matter degradation by taking sediments from four sites in a subtropical large shallow freshwater lake, and monitoring organic matter composition and enzymes in microcosm experiments at five temperatures from 5 to 40°C. Following a three-month incubation, it was found that the mineralization of submerged plants in sediments was strongly influenced by temperature. Removal efficiency of total organic carbon in sediments ranged from 4.3 to 22.6% at 5°C, and reached 46.7–55.5% at 40°C. In addition, the removal efficiency of organic matter and the relative recalcitrant carbon decomposition depended on sediment type. For sediments in the site located in the lake center, recalcitrant and labile carbon decomposition had equivalent responses to the different temperatures. For sediments with dominance of submerged macrophytes, the humic acids were low even at high temperature. Thus, the annual deposition of plant litter in sediments favored organic carbon decomposition rather than humification.
ISSN:0018-8158
1573-5117
DOI:10.1007/s10750-013-1529-2