Assessment of the PROBIT approach for estimating the prevalence of global, moderate and severe acute malnutrition from population surveys

Prevalence of acute malnutrition is classically estimated by the proportion of children meeting a case definition in a representative population sample. In 1995 the WHO proposed the PROBIT method, based on converting parameters of a normally distributed variable to cumulative probability, as an alte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Public health nutrition 2013-05, Vol.16 (5), p.858-863
Hauptverfasser: Dale, Nancy M, Myatt, Mark, Prudhon, Claudine, Briend, André
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Prevalence of acute malnutrition is classically estimated by the proportion of children meeting a case definition in a representative population sample. In 1995 the WHO proposed the PROBIT method, based on converting parameters of a normally distributed variable to cumulative probability, as an alternative method requiring a smaller sample size. The present study compares classical and PROBIT methods for estimating the prevalence of global, moderate and severe acute malnutrition (GAM, MAM and SAM) defined by weight-for-height Z-score (WHZ) or mid-upper arm circumference (MUAC). Bias and precision of classical and PROBIT methods were compared by simulating a total of 1·26 million surveys generated from 560 nutrition surveys. Data used for simulation were derived from nutritional surveys of children aged 6-59 months carried out in thirty-one countries around the world. Data of 459 036 children aged 6-59 months from representative samples were used to generate simulated populations. The PROBIT method provided an estimate of GAM, MAM and SAM using WHZ or MUAC proportional to the true prevalence with a small systematic overestimation. The PROBIT method was more precise than the classical method for estimating the prevalence for GAM, MAM and SAM by WHZ or MUAC for small sample sizes (i.e. n
ISSN:1368-9800
1475-2727
DOI:10.1017/S1368980012003345