High-intensity coherent vacuum ultraviolet source using unfocussed commercial dye lasers

Using two or three commercial pulsed nanosecond dye lasers pumped by a single 30 Hz Nd:YAG laser, generation of 0.10 mJ pulses at 125 nm (6 × 10(13) photons∕pulse) has been demonstrated by resonance enhanced four-wave mixing of collimated (unfocussed) laser beams in mercury (Hg) vapor. Phase matchin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 2013-06, Vol.84 (6), p.063104-063104
Hauptverfasser: Albert, Daniel R, Proctor, David L, Davis, H Floyd
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using two or three commercial pulsed nanosecond dye lasers pumped by a single 30 Hz Nd:YAG laser, generation of 0.10 mJ pulses at 125 nm (6 × 10(13) photons∕pulse) has been demonstrated by resonance enhanced four-wave mixing of collimated (unfocussed) laser beams in mercury (Hg) vapor. Phase matching at various vacuum ultraviolet (VUV) wavelengths is achieved by tuning one laser in the vicinity of the 6 (1)S0 → 6 (3)P1 resonance near 253.1 nm. A number of different mixing schemes are characterized. Our observations using broadband lasers (~0.15 cm(-1) bandwidths) are compared to previous calculations pertaining to four-wave mixing of low intensity narrowband laser beams. Prospects for further increases in pulse energies are discussed. We find that VUV tuning curves and intensities are in good agreement with theoretical predictions. The utility of the VUV light source is demonstrated by "soft universal" single-photon VUV ionization in crossed molecular beam studies and for generation of light at 130.2 nm for oxygen atom Rydberg time-of-flight experiments.
ISSN:0034-6748
1089-7623
DOI:10.1063/1.4806801