Pattern recognition analysis in complex molecule synthesis and the preparation of iso-Diels–Alder motifs

The identification of synthesizable substructural domains within more complex structural targets is of significant value in designing a workable plan of synthesis. We term this process “pattern recognition analysis” (PRA). In this paper we continued to build on the theme of PRA as a potential resour...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2013-07, Vol.110 (27), p.10904-10909
Hauptverfasser: Peng, Feng, Grote, Robin E., Wilson, Rebecca M., Danishefsky, Samuel J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The identification of synthesizable substructural domains within more complex structural targets is of significant value in designing a workable plan of synthesis. We term this process “pattern recognition analysis” (PRA). In this paper we continued to build on the theme of PRA as a potential resource in retrosynthetic blueprints to reach highly challenging targets. The paper operates at two levels. First, there is provided a clear sense of definitions of categories by which patterns are related to hypothetical reaction types. Although the required reaction type may for the moment not exist, we believe that this method of analysis is likely to promote innovation that identifies unmet needs and opportunities to advance the cause of complex target synthesis. In addition, we describe reductions to practice in expanding the menu of achievable patterns. It is likely that the future value of PRA will be associated with its utility in leading the way to new and exploitable chemical innovation.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.1309795110