A hydrodynamic model for wind-driven and tidal circulation in the Arabian Gulf
The vertical/horizontal splitting (VHS) model is extended and adapted to simulate tidal and wind-driven circulation in the Arabian Gulf. The extensions include the use of finite differences for the depth-averaged equations, the use of the depth following coordinate in the vertical, and relating the...
Gespeichert in:
Veröffentlicht in: | Applied mathematical modelling 1990-08, Vol.14 (8), p.410-419 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The vertical/horizontal splitting (VHS) model is extended and adapted to simulate tidal and wind-driven circulation in the Arabian Gulf. The extensions include the use of finite differences for the depth-averaged equations, the use of the depth following coordinate in the vertical, and relating the bottom friction to the bottom velocity. The VHS model is adapted to the Arabian Gulf. Two implementations are presented. The first, HYDRO1, simulates wind-driven and/or tidal circulation in the Arabian Gulf. A two-block grid system in cartesian coordinates is used with a finer grid on the western coast of the gulf. The second, HYDRO2, simulates wind-driven and/or tidal circulation in any user-defined area in the Arabian Gulf. HYDRO2 enables the user to study in detail a specific region of interest in the gulf. Both implementations carry out three-dimensional computation when the conventional two-dimensional hypotheses are locally inadequate and when specified by the user. Elsewhere, two-dimensional computation is employed. Implementation and testing details including specification of appropriate eddy viscosity profile, wind drag coefficient, and Chezy coefficient are discussed. A case study is presented to illustrate the model implementation and capabilities. |
---|---|
ISSN: | 0307-904X |
DOI: | 10.1016/0307-904X(90)90096-N |