Ridge estimation for multinomial logit models with symmetric side constraints

In multinomial logit models, the identifiability of parameter estimates is typically obtained by side constraints that specify one of the response categories as reference category. When parameters are penalized, shrinkage of estimates should not depend on the reference category. In this paper we inv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational statistics 2013-06, Vol.28 (3), p.1017-1034
Hauptverfasser: Zahid, Faisal Maqbool, Tutz, Gerhard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In multinomial logit models, the identifiability of parameter estimates is typically obtained by side constraints that specify one of the response categories as reference category. When parameters are penalized, shrinkage of estimates should not depend on the reference category. In this paper we investigate ridge regression for the multinomial logit model with symmetric side constraints, which yields parameter estimates that are independent of the reference category. In simulation studies the results are compared with the usual maximum likelihood estimates and an application to real data is given.
ISSN:0943-4062
1613-9658
DOI:10.1007/s00180-012-0341-1