On bar lengths in partitions
We present, given an odd integer d, a decomposition of the multiset of bar lengths of a bar partition λ as the union of two multisets, one consisting of the bar lengths in its d-core partition cd(λ) and the other consisting of modified bar lengths in its d-quotient partition. In particular, we obtai...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Edinburgh Mathematical Society 2013-06, Vol.56 (2), p.535-550 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 550 |
---|---|
container_issue | 2 |
container_start_page | 535 |
container_title | Proceedings of the Edinburgh Mathematical Society |
container_volume | 56 |
creator | Gramain, Jean-Baptiste Olsson, Jørn B. |
description | We present, given an odd integer d, a decomposition of the multiset of bar lengths of a bar partition λ as the union of two multisets, one consisting of the bar lengths in its d-core partition cd(λ) and the other consisting of modified bar lengths in its d-quotient partition. In particular, we obtain that the multiset of bar lengths in cd(λ) is a sub-multiset of the multiset of bar lengths in λ. Also, we obtain a relative bar formula for the degrees of spin characters of the Schur extensions of $\mathfrak{S}_n$. The proof involves a recent similar result for partitions, proved by Bessenrodt and the authors. |
doi_str_mv | 10.1017/S0013091512000387 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1372656426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0013091512000387</cupid><sourcerecordid>2957964241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-1e4c95d523be59eb6bcd157a12380fe8b0e28989ff3ab76f049ed07d268ed763</originalsourceid><addsrcrecordid>eNp1kDtLxEAUhQdRMK7-AMEiYGMTnTvvKWXxBQtbuH2YSW7WLHmsM0nhvzdhtxDF6hbnO-dcDiHXQO-Bgn54pxQ4tSCBUUq50SckAaFExg23pySZ5WzWz8lFjLuJ0VpCQm7WXepdSBvstsNHTOsu3bsw1EPdd_GSnFWuiXh1vAuyeX7aLF-z1frlbfm4ygqu2ZABisLKUjLuUVr0yhclSO2AcUMrNJ4iM9bYquLOa1VRYbGkumTKYKkVX5C7Q-w-9J8jxiFv61hg07gO-zHmMLUoqQSb0dtf6K4fQzc9N1FCWS6EhYmCA1WEPsaAVb4PdevCVw40n-fK_8w1efjR41of6nKLP6L_dX0DhbJpNw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1346934491</pqid></control><display><type>article</type><title>On bar lengths in partitions</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Cambridge University Press Journals Complete</source><creator>Gramain, Jean-Baptiste ; Olsson, Jørn B.</creator><creatorcontrib>Gramain, Jean-Baptiste ; Olsson, Jørn B.</creatorcontrib><description>We present, given an odd integer d, a decomposition of the multiset of bar lengths of a bar partition λ as the union of two multisets, one consisting of the bar lengths in its d-core partition cd(λ) and the other consisting of modified bar lengths in its d-quotient partition. In particular, we obtain that the multiset of bar lengths in cd(λ) is a sub-multiset of the multiset of bar lengths in λ. Also, we obtain a relative bar formula for the degrees of spin characters of the Schur extensions of $\mathfrak{S}_n$. The proof involves a recent similar result for partitions, proved by Bessenrodt and the authors.</description><identifier>ISSN: 0013-0915</identifier><identifier>EISSN: 1464-3839</identifier><identifier>DOI: 10.1017/S0013091512000387</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Decomposition ; Integer programming ; Integers ; Mathematical analysis ; Partitions ; Proving ; Symmetry ; Theorems ; Unions</subject><ispartof>Proceedings of the Edinburgh Mathematical Society, 2013-06, Vol.56 (2), p.535-550</ispartof><rights>Copyright © Edinburgh Mathematical Society 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c372t-1e4c95d523be59eb6bcd157a12380fe8b0e28989ff3ab76f049ed07d268ed763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0013091512000387/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>Gramain, Jean-Baptiste</creatorcontrib><creatorcontrib>Olsson, Jørn B.</creatorcontrib><title>On bar lengths in partitions</title><title>Proceedings of the Edinburgh Mathematical Society</title><addtitle>Proceedings of the Edinburgh Mathematical Society</addtitle><description>We present, given an odd integer d, a decomposition of the multiset of bar lengths of a bar partition λ as the union of two multisets, one consisting of the bar lengths in its d-core partition cd(λ) and the other consisting of modified bar lengths in its d-quotient partition. In particular, we obtain that the multiset of bar lengths in cd(λ) is a sub-multiset of the multiset of bar lengths in λ. Also, we obtain a relative bar formula for the degrees of spin characters of the Schur extensions of $\mathfrak{S}_n$. The proof involves a recent similar result for partitions, proved by Bessenrodt and the authors.</description><subject>Decomposition</subject><subject>Integer programming</subject><subject>Integers</subject><subject>Mathematical analysis</subject><subject>Partitions</subject><subject>Proving</subject><subject>Symmetry</subject><subject>Theorems</subject><subject>Unions</subject><issn>0013-0915</issn><issn>1464-3839</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kDtLxEAUhQdRMK7-AMEiYGMTnTvvKWXxBQtbuH2YSW7WLHmsM0nhvzdhtxDF6hbnO-dcDiHXQO-Bgn54pxQ4tSCBUUq50SckAaFExg23pySZ5WzWz8lFjLuJ0VpCQm7WXepdSBvstsNHTOsu3bsw1EPdd_GSnFWuiXh1vAuyeX7aLF-z1frlbfm4ygqu2ZABisLKUjLuUVr0yhclSO2AcUMrNJ4iM9bYquLOa1VRYbGkumTKYKkVX5C7Q-w-9J8jxiFv61hg07gO-zHmMLUoqQSb0dtf6K4fQzc9N1FCWS6EhYmCA1WEPsaAVb4PdevCVw40n-fK_8w1efjR41of6nKLP6L_dX0DhbJpNw</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Gramain, Jean-Baptiste</creator><creator>Olsson, Jørn B.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20130601</creationdate><title>On bar lengths in partitions</title><author>Gramain, Jean-Baptiste ; Olsson, Jørn B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-1e4c95d523be59eb6bcd157a12380fe8b0e28989ff3ab76f049ed07d268ed763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Decomposition</topic><topic>Integer programming</topic><topic>Integers</topic><topic>Mathematical analysis</topic><topic>Partitions</topic><topic>Proving</topic><topic>Symmetry</topic><topic>Theorems</topic><topic>Unions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gramain, Jean-Baptiste</creatorcontrib><creatorcontrib>Olsson, Jørn B.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Proceedings of the Edinburgh Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gramain, Jean-Baptiste</au><au>Olsson, Jørn B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On bar lengths in partitions</atitle><jtitle>Proceedings of the Edinburgh Mathematical Society</jtitle><addtitle>Proceedings of the Edinburgh Mathematical Society</addtitle><date>2013-06-01</date><risdate>2013</risdate><volume>56</volume><issue>2</issue><spage>535</spage><epage>550</epage><pages>535-550</pages><issn>0013-0915</issn><eissn>1464-3839</eissn><abstract>We present, given an odd integer d, a decomposition of the multiset of bar lengths of a bar partition λ as the union of two multisets, one consisting of the bar lengths in its d-core partition cd(λ) and the other consisting of modified bar lengths in its d-quotient partition. In particular, we obtain that the multiset of bar lengths in cd(λ) is a sub-multiset of the multiset of bar lengths in λ. Also, we obtain a relative bar formula for the degrees of spin characters of the Schur extensions of $\mathfrak{S}_n$. The proof involves a recent similar result for partitions, proved by Bessenrodt and the authors.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0013091512000387</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-0915 |
ispartof | Proceedings of the Edinburgh Mathematical Society, 2013-06, Vol.56 (2), p.535-550 |
issn | 0013-0915 1464-3839 |
language | eng |
recordid | cdi_proquest_miscellaneous_1372656426 |
source | EZB-FREE-00999 freely available EZB journals; Cambridge University Press Journals Complete |
subjects | Decomposition Integer programming Integers Mathematical analysis Partitions Proving Symmetry Theorems Unions |
title | On bar lengths in partitions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T06%3A04%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20bar%20lengths%20in%20partitions&rft.jtitle=Proceedings%20of%20the%20Edinburgh%20Mathematical%20Society&rft.au=Gramain,%20Jean-Baptiste&rft.date=2013-06-01&rft.volume=56&rft.issue=2&rft.spage=535&rft.epage=550&rft.pages=535-550&rft.issn=0013-0915&rft.eissn=1464-3839&rft_id=info:doi/10.1017/S0013091512000387&rft_dat=%3Cproquest_cross%3E2957964241%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1346934491&rft_id=info:pmid/&rft_cupid=10_1017_S0013091512000387&rfr_iscdi=true |