On bar lengths in partitions
We present, given an odd integer d, a decomposition of the multiset of bar lengths of a bar partition λ as the union of two multisets, one consisting of the bar lengths in its d-core partition cd(λ) and the other consisting of modified bar lengths in its d-quotient partition. In particular, we obtai...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Edinburgh Mathematical Society 2013-06, Vol.56 (2), p.535-550 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present, given an odd integer d, a decomposition of the multiset of bar lengths of a bar partition λ as the union of two multisets, one consisting of the bar lengths in its d-core partition cd(λ) and the other consisting of modified bar lengths in its d-quotient partition. In particular, we obtain that the multiset of bar lengths in cd(λ) is a sub-multiset of the multiset of bar lengths in λ. Also, we obtain a relative bar formula for the degrees of spin characters of the Schur extensions of $\mathfrak{S}_n$. The proof involves a recent similar result for partitions, proved by Bessenrodt and the authors. |
---|---|
ISSN: | 0013-0915 1464-3839 |
DOI: | 10.1017/S0013091512000387 |