The Influence of Process Parameters on the Properties of PLGA-Microparticles Produced by the Emulsion Extraction Method

Controlled release poly(lactic‐co‐glycolic acid) microparticles for use as active pharmaceutical ingredient carriers were prepared by the emulsion extraction method. Particle formation experiments were carried out in a stirred vessel. The local flow conditions in these experiments, that is, local sh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIChE journal 2013-06, Vol.59 (6), p.1868-1881
Hauptverfasser: Kiss, Nikolett, Brenn, Günter, Suzzi, Daniele, Scheler, Stefan, Jennewein, Herwig, Wieser, Juliana, Khinast, Johannes
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Controlled release poly(lactic‐co‐glycolic acid) microparticles for use as active pharmaceutical ingredient carriers were prepared by the emulsion extraction method. Particle formation experiments were carried out in a stirred vessel. The local flow conditions in these experiments, that is, local shear rates and dissipation rates, and the extraction rate of the organic solvent were examined by a computational fluid dynamics (CFD) simulation. The local flow conditions in the stirred tank reactor have a significant influence on the final properties, specific surface area, skeletal density, organic solvent content, and size of the microparticles. We determined nondimensional correlations for predicting these particle properties as functions of the process parameters as, for example, the stirrer speed, emulsion injection point, and oil droplet size in the initial emulsion. The results demonstrate that CFD simulations offer insight into the particle formation process for different batch sizes and provide a basis for scale‐up and optimization of the process. © 2012 American Institute of Chemical Engineers AIChE J, 59: 1868–1881, 2013
ISSN:0001-1541
1547-5905
DOI:10.1002/aic.13968