Effective Maxwell Equations in a Geometry with Flat Rings of Arbitrary Shape
We analyze the time-harmonic Maxwell equations in a complex geometry: many (order $\eta^{-3}$) small (order $\eta^1$), thin (order $\eta^2$), and highly conductive (order $\eta^{-3}$) metallic objects are distributed in a domain $\Omega\subset \mathbb{R}^3$. We determine the effective behavior of th...
Gespeichert in:
Veröffentlicht in: | SIAM journal on mathematical analysis 2013-01, Vol.45 (3), p.1460-1494 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We analyze the time-harmonic Maxwell equations in a complex geometry: many (order $\eta^{-3}$) small (order $\eta^1$), thin (order $\eta^2$), and highly conductive (order $\eta^{-3}$) metallic objects are distributed in a domain $\Omega\subset \mathbb{R}^3$. We determine the effective behavior of this metamaterial in the limit $\eta\searrow 0$. For $\eta>0$, each single conductor occupies a simply connected domain, but the conductor closes to a ring in the limit $\eta\searrow 0$. This change of topology allows for an extra dimension in the solution space of the corresponding cell-problem. Even though both original materials (metal and void) have the same positive magnetic permeability $\mu_0>0$, the effective Maxwell system exhibits, depending on the frequency, a negative magnetic response. [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0036-1410 1095-7154 |
DOI: | 10.1137/120874321 |