3D Multiwall Carbon Nanotubes (MWCNTs) for Li-Ion Battery Anode
Carbon nanotubes have attracted great attention as promising electrode materials for Li-ion batteries due to major advantages including large surface area and low resistance path. We developed novel multiwall carbon nanotubes (MWCNTs) based 3-dimensional anode for high-efficiency Liion batteries. Th...
Gespeichert in:
Veröffentlicht in: | AIP conference proceedings 2012-03 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Carbon nanotubes have attracted great attention as promising electrode materials for Li-ion batteries due to major advantages including large surface area and low resistance path. We developed novel multiwall carbon nanotubes (MWCNTs) based 3-dimensional anode for high-efficiency Liion batteries. The MWCNTs were synthesized through catalytic thermal chemical vapor deposition (CVD) on 3-dimensional Cu electrode. The 3D Cu electrode played a crucial role in accommodating much larger number of MWCNTs, leading to more amount of Li+ion intake. Results from electrochemical characterization of Li-ion battery with 3D anode indicate better properties as compared to those with MWCNTs on 2D Cu foil anode. In addition, MWCNTs with sputtered amorphous Si ( alpha -Si) layer on them ( alpha -Si/MWCNTs core-shell structure) were also used as anode using a 3D geometry and improved electrochemical properties of these modified MWCNT anode were observed. Moreover, relation between electrochemical performance and structural properties of the MWCNTs and hybrid alpha -Si/MWCNTs composite on 3D Cu electrode is discussed. |
---|---|
ISSN: | 0094-243X |