A New Method of Voiced/Unvoiced Classification Based on Clustering

In this paper, a new method for making v/uv decision is developed which uses a multi-feature v/uv classification algorithm based on the analysis of cepstral peak, zero crossing rate, and autocorrelation function (ACF) peak of short-time segments of the speech signal by using some clustering methods....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of signal and information processing 2011-11, Vol.2 (4), p.336-347
Hauptverfasser: Radmard, Mojtaba, Hadavi, Mahdi, Nayebi, Mohammad Mahdi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a new method for making v/uv decision is developed which uses a multi-feature v/uv classification algorithm based on the analysis of cepstral peak, zero crossing rate, and autocorrelation function (ACF) peak of short-time segments of the speech signal by using some clustering methods. This v/uv classifier achieved excellent results for identification of voiced and unvoiced segments of speech.
ISSN:2159-4465
2159-4481
DOI:10.4236/jsip.2011.24048