Mutation Spectrum of NF1 and Clinical Characteristics in 78 Korean Patients With Neurofibromatosis Type 1

Abstract Neurofibromatosis type 1 (NF1) is one of the most common autosomal dominant disorders in humans. NF1 is caused by mutations of the NF1 gene. Mutation detection is complex owing to the large size of the NF1 gene, the presence of pseudogenes, and the great variety of mutations. Also, few prob...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pediatric neurology 2013-06, Vol.48 (6), p.447-453
Hauptverfasser: Ko, Jung Min, MD, PhD, Sohn, Young Bae, MD, Jeong, Seon Yong, PhD, Kim, Hyon-Ju, MD, FACMG, Messiaen, Ludwine M., PhD
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Neurofibromatosis type 1 (NF1) is one of the most common autosomal dominant disorders in humans. NF1 is caused by mutations of the NF1 gene. Mutation detection is complex owing to the large size of the NF1 gene, the presence of pseudogenes, and the great variety of mutations. Also, few probable genotype–phenotype correlations have been found in NF1. In this study 78 Korean patients from 60 families were screened for NF1 mutations. Mutation analysis of the entire coding region and flanking splice sites was carried out and included the use of a combination of reverse transcription polymerase chain reaction, multiplex ligation probe amplification, or fluorescence in situ hybridization. Mutation spectrum and genotype–phenotype relationship were assessed. Fifty-two distinct NF1 mutations were identified in 60 families. The mutations included 30 single base substitutions (12 missense and 18 nonsense), 11 missplicing mutations, seven small insertion or deletions, and four gross deletions. Sixteen (30.8%) mutations were novel; c.1A>G, c.2033_2034insC, c.2540T>C, c.4537C>T, c.5546G>A, c.6792C>A, and c.6792C>G were recurrently identified. The mutations were evenly distributed across exon 1 through intron 47 of NF1 , and no mutational hot spots were found. A genotype–phenotype analysis suggests that there is no clear relationship between specific mutations and clinical features. This analysis revealed a wide spectrum of NF1 mutations in Korean patients. As technologies advance in molecular genetics, the mutation detection rate will increase. Considering that 30.8% of detected mutations were novel, exhaustive mutation analysis of NF1 may be an important tool in early diagnosis and genetic counseling.
ISSN:0887-8994
1873-5150
DOI:10.1016/j.pediatrneurol.2013.02.004